Закон ома для цепей с индуктивностью

Закон Ома для цепей переменного и постоянного тока

Закон Ома является одним из основных законов электротехники. Он довольно прост и применяется при расчете практически любых электрических цепей. Но данный закон имеет некоторые особенности работы в цепях переменного и постоянного тока при наличии в цепи реактивных элементов. Эти особенности нужно помнить всегда.

Закон Ома для цепи постоянного тока

Классическая схема закона Ома выглядит так:

А звучит и того проще – ток, протекающей на участке цепи, будет равен отношению напряжения цепи к ее сопротивлению, что выражается формулой:

Но ведь мы знаем, что помимо активного сопротивления R, существует и реактивные сопротивления индуктивности ХL и емкости XC. А ведь согласитесь, что электрические схемы с чисто активным сопротивлением встречаются крайне редко. Давайте рассмотрим схему, в которой последовательно включена катушка индуктивности L, конденсатор С и резистор R:

Помимо чисто активного сопротивления R, индуктивность L и емкость С имеют и реактивные сопротивления ХL и XC, которые выражены формулами:

Где ω это циклическая частота сети, равная ω = 2πf. f – частота сети в Гц.

Для постоянного тока частота равна нулю (f = 0), соответственно реактивное сопротивление индуктивности станет равным нулю (формула (1)), а емкости – бесконечности (2), что приведет к разрыву электрической цепи. Отсюда можно сделать вывод, что реактивное сопротивление элементов в цепях постоянного напряжения отсутствует.

Закон Ома для цепи переменного тока

Если рассматривать классическую электрическую цепь и на переменном токе, то она практически ничем не будет отличаться от постоянного тока, только источником напряжения (вместо постоянного — переменное):

Соответственно и формула для такого контура останется прежней:

Но если мы усложним схему и добавим к ней реактивных элементов:

Ситуация изменится кардинально. Теперь f у нас не равна нулю, что сигнализирует о том, что помимо активного, в цепь вводится и реактивное сопротивление, которое также может влиять на величину тока, протекаемого в контуре и приводить к резонансу. Теперь полное сопротивление контура (обозначается как Z) и оно не равно активному Z ≠ R. Формула примет следующий вид:

Соответственно немного изменится и формула для закона Ома:

Почему это важно?

Знание этих нюансов позволит избежать серьезных проблем, которые могут возникнуть при неправильном подходе к решению некоторых электротехнических задач. Например, в контур переменного напряжения подключена катушка индуктивности со следующими параметрами: fном = 50 Гц, Uном = 220 В, R = 0,01 Ома, L = 0,03 Гн. Ток, протекающий через данную катушку будет равен:

В случае, если подать на эту же катушку постоянное напряжение с таким же значением, получим:

Мы видим, что ток катушки возрастает в разы, что приводит к выходу из строя элементов контура.

elenergi.ru

Мы с вами знаем формулировку закона Ома для цепей постоянного тока, которая гласит, что ток в такой цепи прямо пропорционален напряжению на элементе цепи и обратно пропорционален сопротивлению этого элемента постоянному току, протекающему через него.

Однако при изучении цепей переменного тока стало известно, что оказывается кроме элементов цепей с активным сопротивлением, есть элементы цепи с так называемым реактивным сопротивлением, то есть индуктивности и емкости (катушки и конденсаторы).

В цепи, содержащей только активное сопротивление, фаза тока всегда совпадает с фазой напряжения (рис 1.), т. е. сдвиг фаз тока и напряжения в цепи с чисто активным сопротивлением равен нулю.

Рисунок 1. Напряжение и ток в цепи с чисто активным сопротивлением. Сдвиг фаз между током и напряжение в цепи переменного тока с чисто активным сопротивлением всегда равен нулю

Отсюда следует, что угол между радиус-векторами тока и напряжения также равен нулю.

Тогда, падение напряжения на активном сопротивлении определяется по формуле:

где, U-напряжение на элементе цепи,

I – ток через элемент цепи

Формула (1) применима как для амплитудных, так и для эффективных значений тока и напряжения:

где, Um-амплитудное значение напряжения на элементе цепи,

Im – амплитудное значение тока через элемент цепи

R – активное сопротивление элемента

В цепи, содержащей чисто реактивное сопротивление — индуктивное или емкостное, — фазы тока и напряжения сдвинуты друг относительно друга на четверть периода, причем в чисто индуктивной цепи фаза тока отстает от фазы напряжения (рис. 2), а в чисто емкостной цепи фаза тока опережает фазу напряжения (рис. 3).

Рисунок 2. Напряжение и ток в цепи с чисто индуктивным сопротивлением. Фаза тока отстает от фазы напряжения на 90 градусов.

Рисунок 3. Напряжение и ток в цепи с чисто емкостным сопротивлением. Фаза тока опережает фазу напряжения на угол 90 градусов.

Отсюда следует, что в чисто реактивной цепи угол между радиус-векторами тока и напряжения всегда равен 90°, причем в чисто индуктивной цепи радиус-вектор тока при вращении движется позади радиус-вектора напряжения, а в чисто емкостной цепи он движется впереди радиус-вектора напряжения.

Падения напряжения на индуктивном и емкостном сопротивлениях определяются соответственно по формулам:

www.sxemotehnika.ru

Закон Ома для переменного тока

После открытия в 1831 году Фарадеем электромагнитной индукции, появились первые генераторы постоянного, а после и переменного тока. Преимущество последних заключается в том, что переменный ток передается потребителю с меньшими потерями.

При увеличении напряжения в цепи, ток будет увеличиваться аналогично случаю с постоянным током. Но в цепи переменного тока сопротивление оказывается катушкой индуктивности и конденсатор. Основываясь на этом, запишем закон Ома для переменного тока: значение тока в цепи переменного тока прямо пропорционально напряжению в цепи и обратно пропорционально полному сопротивлению цепи.

где

  • I [А] – сила тока,
  • U [В] – напряжение,
  • Z [Ом] – полное сопротивление цепи.
  • В общем случае полное сопротивление цепи переменного тока (рис. 1) состоит из активного (R [Ом]), индуктивного, и емкостного сопротивлений. Иными словами, ток в цепи переменного тока зависит не только от активного омического сопротивления, но и от величины емкости (C [Ф]) и индуктивности (L [Гн]). Полное сопротивление цепи переменного тока можно вычислить по формуле:

    где

    • — индуктивное сопротивление, оказываемое переменному току, обусловленное индуктивностью электрической цепи, создается катушкой.
    • — емкостное сопротивление, создается конденсатором.

    Полное сопротивление цепи переменного тока можно изобразить графически как гипотенузу прямоугольного треугольника, у которого катетами являются активное и индуктивное сопротивления.

    Рис.1. Треугольник сопротивлений

    Учитывая последние равенства, запишем формулу закона Ома для переменного тока:

    – амплитудное значение силы тока.

    Рис.2. Последовательная электрическая цепь из R, L, C элементов.

    Из опыта можно определить, что в такой цепи колебания тока и напряжения не совпадают по фазе, а разность фаз между этими величинами зависит от индуктивности катушки и емкости конденсатора:

    Цепь переменного тока состоит из последовательно соединенных конденсатора (емкостью С), катушки индуктивности (L) и активного сопротивления (R). На зажимы цепи подается действующее напряжение (U), частота которого ν. Чему равно действующее значение силы тока в цепи?

    zakon-oma.ru

    Закон ома для цепей с индуктивностью

    2.4. Закон Ома для цепи переменного тока. Мощность.

    В § 2.3 были выведены соотношения, связывающие амплитуды переменных токов и напряжений на резисторе, конденсаторе и катушке индуктивности:

    Эти соотношения во виду напоминают закон Ома для участка цепи постоянного тока, но только теперь в них входят не значения постоянных токов и напряжений на участке цепи, а амплитудные значения переменных токов и напряжений .

    Соотношения (*) выражают закон Ома для участка цепи переменного тока , содержащего один из элементов R , L и C . Физические величины R , и ω L называются активным сопротивлением резистора , емкостным сопротивлением конденсатора и индуктивным сопротивлением катушки .

    При протекании переменного тока по участку цепи электромагнитное поле совершает работу, и в цепи выделяется джоулево тепло. Мгновенная мощность в цепи переменного тока равна произведению мгновенных значений тока и напряжения: p = J · u . Практический интерес представляет среднее за период переменного тока значение мощности

    Здесь I 0 и U 0 – амплитудные значения тока и напряжения на данном участке цепи, φ – фазовый сдвиг между током и напряжением. Черта означает знак усреднения. Если участок цепи содержит только резистор с сопротивлением R , то фазовый сдвиг φ = 0 :

    Для того, чтобы это выражение по виду совпадало с формулой для мощности постоянного тока, вводятся понятия действующих или эффективных значений силы тока и напряжения:

    Средняя мощность переменного тока на участке цепи, содержащем резистор, равна

    Если участок цепи содержит только конденсатор емкости C , то фазовый сдвиг между током и напряжением Поэтому

    Аналогично можно показать, что P L = 0 .

    Таким образом, мощность в цепи переменного тока выделяется только на активном сопротивлении. Средняя мощность переменного тока на конденсаторе и катушке индуктивности равна нулю.

    Рассмотрим теперь электрическую цепь, состоящую из последовательно соединенных резистора, конденсатора и катушки. Цепь подключена к источнику переменного тока частоты ω. На всех последовательно соединенных участках цепи протекает один и тот же ток. Между напряжением внешнего источника e ( t ) и током J ( t ) возникает фазовый сдвиг на некоторый угол φ. Поэтому можно записать

    Такая запись мгновенных значений тока и напряжения соответствует построениям на векторной диаграмме (рис. 2.3.2). Средняя мощность, развиваемая источником переменного тока, равна

    Как видно из векторной диаграммы, U R = 0 · cos φ , поэтому Следовательно, вся мощность, развиваемая источником, выделяется в виде джоулева тепла на резисторе, что подтверждает сделанный ранее вывод.

    В § 2.3 было выведено соотношение между амплитудами тока I 0 и напряжения 0 для последовательной RLC -цепи:

    physics.ru

    Закон Ома для переменного тока с активным сопротивлением и индуктивностью

    Пример 1. Определить ток, проходящий через катушку, индуктивное сопротивление которой равно 5 Ом, а активное сопротивление равно 1 Ом, если напряжение сети переменного тока равно 12 В.

    Определим полное сопротивление катушки:

    Применяя формулу закона Ома для цепи r, L получим:

    В частных случаях, когда в цепи переменного тока имеется только активное сопротивление r, ток определяется по формуле:

    В случаях, если в цепи имеется индуктивное сопротивление, а активное сопротивление так мало, что им можно пренебречь, формула закона Ома приобретает вид:

    Если необходимо узнать активное сопротивление потребителя переменного тока, обладающего некоторым кажущимся сопротивлением (обмотка электродвигателя, индукционной катушки или электромагнита), то нужно включить этот потребитель в цепь постоянного тока (рисунок 1).

    Деля показание вольтметра, включенного к зажимам потребителя, на показание амперметра, включенного последовательно в цепь, получим величину активного сопротивления, так как

    Сказанное справедливо только при низких частотах, когда явлением поверхностного эффекта можно пренебречь и считать активное сопротивление потребителя равным его сопротивлению при постоянном токе.

    Источник: Кузнецов М. И., «Основы электротехники» — 9-е издание, исправленное — Москва: Высшая школа, 1964 — 560 с.

    www.electromechanics.ru

Закрыть меню