Дюлонга-пти закон

Закон Дюлонга и Пти

Теплоемкость

Тепловые свойства твердых тел

8.1.1 Закон Дюлонга и Пти

8.1.2 Теория теплоемкости Дебая

8.1.3 Электронная теплоемкость

8.2.1 Понятие о коэффициенте теплопроводности

8.2.2 Механизмы теплопроводности твердых тел

Из молекулярной физики известно, что теплоемкость при постоянном объеме есть первая производная по температуре от внутренней энергии тела:

или для твердых тел

.

Допустим, что для твердого тела справедлива гипотеза о равномерном распределении энергии теплового движения по степеням свободы. Указанное допущение является применением классической теории теплоемкостей к твердому телу, и в соответствии с ним на каждую степень свободы приходится энергия ε =1/2 kT.

В качестве модели выберем твердое тело, атомы которого совершают малые колебания около положения равновесия в узлах кристаллической решетки. Каждый атом независимо от соседей колеблется в трех взаимно перпендикулярных направлениях. То есть он имеет три независимые степени свободы. Такой атом можно уподобить совокупности трех линейных гармонических осцилляторов. При колебании осциллятора последовательно происходит преобразование кинетической энергии в потенциальную и наоборот. Поскольку средняя кинетическая энергия, составляющая ½ kT на одну степень свободы, остается неизменной, а средняя потенциальная энергия равна средней кинетической, то полная энергия осциллятора, равная сумме кинетической и потенциальной энергий, будет составлять kT.

Тогда полная энергия колебания одного узла решетки выразится формулой

,

так как для поступательного движения точки число степеней свободы i = 3.

Тогда полная средняя тепловая энергия такой системы равна:

,

где k – постоянная Больцмана;

R – универсальная газовая постоянная.

Тогда теплоемкость, как приращение энергии, соответствующее повышению температуры на один градус, будет равна:

.

Таким образом, атомные теплоемкости всех химически простых кристаллических тел при достаточно высокой температуре одинаковы и равны 25 Дж∙K -1 ∙моль -1 .

Эта закономерность давно известна в физике как закон Дюлонга и Пти. Французские физики Дюлонг и Пти, исследуя теплоемкости твердых тел, еще в 1819 г. (задолго до создания классической теории теплоемкостей) из опытных данных установили этот закон.

Таблица 8.1 – Значения теплоемкости некоторых материалов при комнатной температуре

studopedia.ru

Закон Дюлонга-Пти

Дюлонг Пьер Луи (1785 — 1838) и Пти Алексис Перез (1791 — 1820) — француз­ские физики. Закон, на­званный их именами, был сформулирован в 1819 г. Ученые экспериментально установили, что:

«. про­изведение удельной теп­лоемкости и атомного ве­са для простых тел в кристаллическом состоя­нии является величиной почти постоянной».

Закон Дюлонга-Пти можно частично объяснить в рамках классической статистической физики. Рассмотрим кри­сталлическую решетку, состоящую из атомов, каждый из которых, независимо от соседей, колеблется в трех взаим­но перпендикулярных направлениях, т. е. имеет три неза­висимые колебательные степени свободы. Согласно закону равнораспределения,

«средняя энергия системы равна про­изведению числа степеней свободы на kT / 2».

Это утверждение справедливо для независимых колебаний атомов решетки. Так как колебательные степени свободы имеют двойной вес, то средняя энергия одномерного осциллятора равна

Один моль кристалла состоит из NA атомов (NA = 6,02 • 10 23 моль -1 ) и имеет 3NA колебательных степеней свободы, т. е. может быть представлен как набор из 3NA осцилляторов. Следовательно, полная тепловая энергия кристалла определится как:

Отсюда молярная теплоемкость кристалла равна

Так как газовая постоянная R = 8,314 Дж/(моль•К), то 3R ≈ 25 Дж/(моль•К), теплоемкость постоянна, а ее значение не­плохо согласуется с законом Дюлонга-Пти. Материал с сайта http://worldofschool.ru

В рамках классической статистики невозможно понять, почему электроны в кристалле не дают вкла­да в энергию твердого те­ла. Если его учесть, то за­кон равнораспределения приведет к постоянной те­плоемкости C = (9 / 2) • RT = 37,6 Дж/(моль•К). Это примерно в 1,5 раза боль­ше наблюдаемого значе­ния, так что согласование только «неплохое».

worldofschool.ru

Закон Дюлонга — Пти

Бозе-Эйнштейна · Ферми-Дирака
Parastatistics · Anyonic statistics
Braid statistics

Закон Дюлонга-Пти (Закон постоянства теплоёмкости) — эмпирический закон, согласно которому молярная теплоёмкость твёрдых тел при комнатной температуре близка к 3R:

Закон выводится в предположении, что кристаллическая решетка тела состоит из атомов, каждый из которых совершает гармонические колебания в трех направлениях, определяемыми структурой решетки, причем колебания по различным направлениям абсолютно независимы друг от друга.

.

Формула вытекает из теоремы о равнораспределении энергии по степеням свободы. Так как каждый осциллятор имеет одну степень свободы, то его средняя кинетическая энергия равна , а так как колебания происходят гармонически, то средняя потенциальная энергия равна средней кинетической, а полная энергия — соответственно их сумме. Число осцилляторов в одном моле вещества составляет , их суммарная энергия численно равна теплоемкости тела — отсюда и вытекает закон Дюлонга-Пти.

Приведем таблицу экспериментальных значений теплоемкости ряда химических элементов для нормальных температур:

Зависимость теплоёмкости от температуры при низких температурах объясняется в моделях Эйнштейна и Дебая.

  • И. В. Савельев, Курс общей физики, том 1.
  • Сивухин Д. В. Общий курс физики Т. II. Термодинамика и молекулярная физика.

Wikimedia Foundation . 2010 .

Смотреть что такое «Закон Дюлонга — Пти» в других словарях:

ДЮЛОНГА И ПТИ ЗАКОН — эмпирич. правило, согласно к рому теплоёмкость тв. тел при постоянном объёме и темп ре Т ? 300К постоянна и равна 6 кал/(моль•К). Установлен франц. учёными П. Дюлонгом (P. Dulong) и А. Пти (A. Petit) в 1819. Д. и П. з. приближённо справедлив для… … Физическая энциклопедия

Закон Дюлонга-Пти — (Закон постоянства теплоёмкости) эмпирический закон, согласно которому молярная теплоёмкость твёрдых тел при комнатной температуре близка к 3R: где R универсальная газовая постоянная. Закон выводится в предположении, что кристаллическая решетка… … Википедия

ДЮЛОНГА И ПТИ ЗАКОН — эмпирическое правило, согласно которому теплоемкость твердых тел при постоянном объеме не зависит от температуры и равна 6 кал/(моль?К), или 25,12 Дж/(моль?К). Дюлонга и Пти закон справедлив для большинства химических элементов и простых… … Большой Энциклопедический словарь

ЗАКОН ДЮЛОНГА-ПТИ — ЗАКОН ДЮЛОНГА ПТИ, физический закон, согласно которому произведение удельной теплоемкости и относительной атомной массы для всех простых твердых тел приблизительно равно 25 (при условии, что удельная теплоемкость выражена в Дж.моль 1К 1). На… … Научно-технический энциклопедический словарь

Закон Дюлонга — Статистическая физика … Википедия

Дюлонга и Пти закон — эмпирическое правило, согласно которому теплоёмкость твердых тел при постоянном объёме не зависит от температуры и равна 6 кал/(моль·К), или 25,12 Дж/(моль·К). Дюлонга и Пти закон справедлив для большинства химических элементов и простых… … Энциклопедический словарь

закон Дюлонга-Пти — Diulongo ir Pti dėsnis statusas T sritis fizika atitikmenys: angl. Dulong Petit law vok. Dulong Petitsches Gesetz, n rus. закон Дюлонга Пти, m pranc. loi de Dulong et Petit, f … Fizikos terminų žodynas

Дюлонга и Пти закон — касается теплоемкости простых тел. По этому закону произведение теплоемкости простого тела на атомный вес величина постоянная, близкая к 6. Закон имеет приложение в твердом состоянии и именно в тех случаях, когда теплоемкость мало меняется с… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Дюлонга и Пти закон — эмпирическое правило, согласно которому теплоёмкость при постоянном объёме для всех простых твёрдых тел не зависит от температуры и составляет 6 кал/(моль·град). Установлен французскими учёными П. Дюлонгом и А. Пти в 1819. Д. и П. з.… … Большая советская энциклопедия

ДЮЛОНГА И ПТИ ЗАКОН — эмпирич. правило, согласно к рому теплоёмкость тв. тел при пост. объёме не зависит от темп ры и равна 6 кал/(моль х К), или 25,12 Дж/(моль х К). Д. и П. з. справедлив для большинства хим. элементов и простых соед. при комнатной темп ре; при… … Естествознание. Энциклопедический словарь

dic.academic.ru

Дюлонга и Пти закон

Дюлонга и Пти закон — эмпирич. правило, согласно к-рому молярная теплоёмкость при пост. объёме для всех простых твёрдых тел одинакова и составляет прибл. 25Дж/моль-К. Установлен в 1819 франц. физиками П. Дюлонгом (P. L. Dulong) и А. Пти (A. Th. Petit). Д. и П. з. может быть выведен из закона равнораспределения колебат. энергии по степеням свободы, согласно к-рому на каждую степень свободы колебат. движения приходится энергия kT, где Т — абс. температура. Поскольку число колебательных степеней свободы у кристалла, содержащего N атомов (N — число Авогадро), равно 3N (см. Динамика кристаллической решётки ),то ср. энергия теплового движения в кристалле, содержащем 1 моль вещества, составляет E=3NkT, а соответствующая молярная теплоёмкость равна дE/дТ= cv= 3Nk=24,9 Дж/моль-К. Д. и П. з. удовлетворительно выполняется для большинства хим. элементов и простых соединений при комнатной температуре. При понижении температуры теплоёмкость падает гораздо ниже значения, даваемого Д. и П. з., стремясь к нулю как Т 3 у диэлектриков и как Т — у металлов. Отклонения от Д. и П. з. при низких темп-pax были объяснены в Дебая теории твёрдого тела. Согласно этой теории, Д. и П. з. относится к области высоких температур (выше Дебая температуры qD), в к-рой возбуждены все колебат. степени свободы. При понижении температуры происходит «вымораживание» всё большего числа степеней свободы, что и приводит к уменьшению теплоёмкости. В кристаллах с высокой температурой Дебая (у алмаза qD=1860 К, у бериллия qD=1000 К) Д. и П. з. не выполняется уже при комнатной температуре. Небольшие отклонения от Д. и П. з. наблюдаются и при высоких темп-pax (Т>qD). Они связаны с ангармонизмом колебаний кристаллич. решётки и дисперсией акустич. фононов ,обусловленной дискретной структурой кристалла. Для сложных кристаллов Д. и П. з. может не выполняться по двум причинам: 1) кристалл плавится пли разлагается при Т к библиотеке к оглавлению FAQ по эфирной физике ТОЭЭ ТЭЦ ТПОИ ТИ

Мало ли что я обещал гоям?
Российскую пенсию будут получать только израильтяне!
Мой кошелёк — Минц всё равно уже вывез деньги ПФ за рубеж.

Андрей Савельев Самые дорогие проститутки

bourabai.ru

Дюлонга-пти закон

Дебай посчитал, что предположение Эйнштейна о равенстве частот всех гармонических осцилляторов является чрезмерно упрощенным. Он предположил, что гармонические осцилляторы обладают спектром (набором) частот, общее число которых ограничено и равно 3N. В соответствии с этим Дебай получил формулы для молярных (См) теплоёмкостей кристаллов

— при высоких температурах и

— при низких температурах.

где — характеристическая температура Дебая.

Это соотношение носит название закона кубов Дебая.

Понятие о зонной теории твердых тел

Взаимодействие электронов и ядер в свободном атоме является весьма сложным. Еще более сложно описать их взаимодействие в кристалле, где каждая частица взаимодействует с огромным числом соседних частиц. Известно, что в изолированном атоме электроны находятся в дискретных энергетических состояниях. Из соотношения неопределенностей для энергии и времени

ΔЕ·Δt

ширина энергетического уровня для электрона в свободном возбужденном атоме (Δt∼10 -8 с) составляет величину порядка 10 -7 эВ, а в основном состоянии (Δt→∞) –ΔЕ ≃0. Для электронов в кристалле ширина энергетического уровня от 1 до 10 эВ. Почему возрастает неопределенность в определении энергии электронов атома в кристалле?

В свободном атоме энергетические состояния определяются взаимодействием их с ядром своего атома. При сближении двух атомов на расстояние менее 10 -10 м А электронные оболочки валентных (внешних) электронов настолько перекроются, что энергетические уровни уже не будут соответствовать энергетическим уровням электронов свободного атома. В отличие от изолированных атомов, где энергетические уровни электрона представляют резкие линии (определенные значения), при образовании кристалла происходит расщепление уровней и энергетический спектр электронных состояний представляет собой совокупность энергетических уровней, называемых зоной.

Расщепление уровней присуще всем электронам атома, но величина расщепления для разных уровней разная.

Для внутренних оболочек величина расщепления очень мала и внутренние электроны в кристалле ведут себя практически также как и в изолированных атомах.

В результате расщепления энергетических уровней область возможных значений энергии электронов кристалла разделяется на ряд зон (рис. 181) – разрешенных и запрещенных значений энергии. С уменьшением энергии ширина разрешенных зон убывает, а запрещенных – возрастает.

Энергетическая зона не является непрерывным рядом значений энергий электрона, а представляет собой ряд конкретных дискретных уровней, отстоящих друг от друга на величину порядка 10 -22 эВ. Разрешенные энергетические зоны в кристалле могут быть по разному заполнены электронами – в предельных случаях либо полностью свободны, или целиком заполнены.

Возможны переходы электронов из одной разрешенной зоны в другую. Для этого необходимо затратить энергию, численно равную ширине запрещенной зоны. Для внутризонных переходов с уровня на уровень требуется очень небольшая энергия (10 -4 – 10 -8 эВ). Существование энергетических зон позволяет объяснить разделение твердых веществ по электропроводности на металлы, полупроводники и диэлектрики (рис. 182). Электропроводность металла объясняется тем, что электроны валентной зоны (у металлов она является и зоной проводимости) под действием незначительной сообщенной им энергии могут совершать внутризонные переходы, а поскольку они слабо связаны с узлами кристаллической решетки, то под действием слабого электрического поля могут ускоряться и приобретать дополнительную скорость в направлении противоположном полю, т.е. обеспечивать электрический ток.

У полупроводников валентная зона полностью заполнена и для вовлечение электронов в электрический ток им необходимо сообщить энергию не меньшую ширины запрещенной зоны, т.е. перевести электроны из валентной в свободную зону. Ширина запрещённой зоны у полупроводников имеет величину порядка 1эВ.

Еще большая энергия требуется для перевода электрона из валентной в зону проводимости (свободную зону) у изоляторов, почему они и не проводят электрический ток.

У металлов две соседние разрешенные зоны могут перекрываться и тогда переход электрона из валентной зоны в свободную по энергетическим затратам эквивалентен внутризонному переходу.

studfiles.net

Закрыть меню